- 1 次の(1)から(7)の問いに答えなさい。【知識・技能 2点×7問】
- (1) $\frac{1}{4} + \left(-\frac{2}{3}\right)$ を計算しなさい。
- (2) 方程式 7-4(x-3)=11 を解きなさい。
- (3) 2(x-3y)-3(x-y) を計算しなさい。
- (4) $-24x^2y \div 2xy \times 6x$ を計算しなさい。
- (5) 等式 2x-3y=5 を, x について解きなさい。
- (6) 連立方程式 $\begin{cases} 5x+7y=3\\ 2x+3y=1 \end{cases}$ を解きなさい。
- (7) 赤玉4個,白玉2個が入っている袋から,玉を1個取り出すとき,それが赤玉である確率を 求めなさい。
- 2 次の(1)から(4)の問いに答えなさい。
- (1) 次の①, ②の計算をしなさい。【知識・技能 2点×2問】

 - ① $(15ab 5b^2) \div 5b$ ② $(6x^2y 3xy) \div \left(-\frac{3}{2}x\right)$
- (2) 次の①から③の式を展開しなさい。【知識・技能 2点×3問】
 - ① (2x+3)(x-4)
- ② (x-3)(x+5)
- $(x-5)^2$

(3)	次の①から③の式を因数分解	しなさい。【知識・技能 2点×3f	司
1	mab-mb	② $x^2 - 14x + 49$	$3 9x^2 - 36$
		状数をかけて, ある自然数の2乗に	するにはどのような数をかければ
C	にいか求めなさい。【思考・判断	「• 衣坑 ∠ 炰 】	
3 次0	ひ(1)から(9)の問いに答:	えなさい。	
(1)	次の①から③の数の平方根を記	書きなさい。【知識・技能 2点×	3問】
1	36	② 0.09	3 5
(2)	次の①,②の数を \sqrt を使わな	ないで表しなさい。【知識・技能 2	2点×2問】
1	$\sqrt{4}$	$2 - \sqrt{\frac{9}{64}}$	
		V 04	
(3)	F	なさい。(完答)【知識・技能 2点 	Į.
	$\sqrt{8}$, $-\sqrt{0.81}$, $\sqrt{\frac{4}{9}}$	$\frac{1}{4}$, $-\sqrt{3}$, $\sqrt{16}$	

(5) 次の数を、小さい方から順に並べなさい。(完答)【知識・技能 2点】

 $\frac{3}{5}$, $\frac{3}{\sqrt{5}}$, $\frac{\sqrt{3}}{5}$, $\sqrt{\frac{3}{5}}$

- (6) 次の①, ②の計算をしなさい。【知識・技能 2点×2問】

- (7) 次の式を簡単にしなさい。【知識・技能 2点×2問】
 - ① $\sqrt{3} + \sqrt{12}$

- (8) 次の①から③の式を展開しなさい【知識・技能 2点×3問】

- ① $\sqrt{3}(2-\sqrt{6})$ ② $(2\sqrt{6}-1)^2$ ③ $(\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{5})$
- (9) $3<\sqrt{a}<4$ をみたす自然数aの個数を求めなさい。【思考・判断・表現 2点】
- 4 次の(1)から(3)の問いに答えなさい。
 - (1) 次の①から⑥の二次方程式を解きなさい。【知識・技能 2点×6問】
 - (1) $3x^2 = 192$

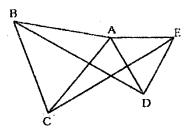
② $3x^2 = 24$

- $(x+3)^2=49$
- $4 x^2 x 20 = 0$ $x^2 8x = 0$

- (2) 連続した2つの正の整数があります。それぞれを2乗した数の和が61になるとき、これらの2つ の整数を求めなさい。【思考・判断・表現 2点】

(3) 二次方程式 $x^2 + ax - 2a = 0$ の解の1つが1であるとき、もう1つの解を求めなさい。

【思考・判断・表現 2点】

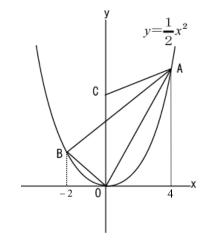

- 5 次の(1)から(3)の問いに答えなさい。【知識・技能 2点×3問】
- (1) yがxの2乗に比例し、x=-3のときy=72である。このとき、yをxの式で表しなさい。

(2) 関数 $y = x^2$ について、x の変域が $-1 \le x \le 2$ のときの y の変域を求めなさい。

(3) 関数 $y = -\frac{1}{2}x^2$ について、x の値が-3から-1まで増加するときの変化の割合を求めなさい。

6 図でABCとADEは正三角形です。

このとき、△ABD≡△ACEとなることを次のように証明しました。 しかし、書かれている証明は、このままでは正しくありません。 証明の下線部のうち、いずれか1つを書き直すことで、証明を正しく


することができます。この証明を正しくするために、下線部アからキまでのうち、どれを書き直せばよいか、書き直すものを1つ選んで、そのかな符号を書きなさい。また、証明が正しくなるように、その下線部を書き直しなさい。【思考・判断・表現 2点(完答)】

(証明)△ABDと△ACEにおいて		
$\triangle ABC$ は正三角形なので、	$\mathcal{T} AB = AC$	$\cdots\cdots \textcircled{1}$
	$\angle BAC = 60^{\circ}$	·····②
$\triangle ADE$ は正三角形なので、		3
	$\pm \angle EAD = 60^{\circ}$	$\cdots \cdot \underbrace{4}$
②より, <u>* ∠BAD=∠BA</u>	5	
4 1 1 2 1 2 2 2 2 2 2 2 2 3 4 4 5 5 6	$\Delta D + \angle C A D = 60^{\circ} + \angle C A D$	6
⑤, ⑥より,	$\angle BAD = \angle CAE$	$\cdots \cdots ?$
①, ③, ⑦より, 2組の辺とそ	この間の角が,それぞれ等しいので,	
	$\triangle A B D \equiv \triangle A C E$	

7 右の図で、Oは原点、A、Bは関数 $y = \frac{1}{2}x^2$ のグラフ上の点です。

また、Cはy軸上の点で、そのy座標は正です。

点A、Bのx 座標がそれぞれ4、-2のとき、次の(1)から(3) の問いに答えなさい。【思考・判断・表現 2点 \times 3問】

- (1) 直線ABの式を求めなさい。
- (2) △ABOの面積を求めなさい。
- (3) △ABOと△ACOの面積が等しいとき、点Cの座標を求めなさい。

8 田中さんと中村さんが、同じスタートラインに立っています。2人でじゃんけんをして、勝った方が2歩前へ進み、負けた方が1歩後ろへ下がるゲームをしました。

次の(1)から(3)の場合について、問いに答えなさい。ただし、2人の歩幅は同じで、あいこはないものとします。【思考・判断・表現 $2 \div 3$ 間】

(1) 6回じゃんけんをしたら、田中さんは、

勝, 負, 勝, 負, 負, 勝

という結果になりました。このとき、田中さんはスタートラインより何歩前にいますか。

- (2) 10回じゃんけんをして、田中さんが6回勝つと、田中さんはスタートラインより何歩前にいますか。
- (3) 8回じゃんけんをして、中村さんが5回勝つと、2人の間は何歩離れていますか。

数学テスト3年

教科書 ~p119 3年 組 番 名前

1 次の(1)から(7)の問いに答えなさい。【知識・技能 2点×7問】

(1) $\frac{1}{4} + \left(-\frac{2}{3}\right)$ を計算しなさい。【R4 正答率 91.6%】 $\frac{3}{12} - \frac{8}{12}$

(2) 方程式 7(4(x-3)=11 を解きなさい。【86.2%】

7-4x+12=11 -4x = 11-19 x = 2

a(b+c) = ab+ac

= - x - 34 + \$668

(4) $\bigcirc 24x^2y \div 2xy \times 6x$ を計算しなさい。【80.1%】 $= -\frac{24x^2x \times 5^3x}{2x^2x} = -72x^2$

○ 符号② ↑ → ×

(5) 等式 2x-3y=5 を、xについて解きなさい。【75.1%】

EDUTE 2 x = 3% + 5 $y = \frac{3\% + 5}{2}$

(6) 連立方程式 $\begin{cases} 5x + 7y = 3 & \oplus \\ \text{を解きなさい。【80.5%】} \end{cases}$

①x2 10x+147 = 6 ... 0

2x+3x(-1)=1 2x+3x(-1)=1 2x =1+3

@'-O' #:-

x = 2 (x, y) = (2, -1)

(7) 赤玉4個, 白玉2個が入っている袋から, 玉を1個取り出すとき, それが赤玉である確率を求めなさい。【84.3%】 全書で 王、は 6個 そのうち 赤王、ヤベ 4個

(赤玉を取り出す確率) = (赤玉の個数) = 4 = 3

2 次の(1)から(4)の問いに答えなさい。

(1) 次の①, ②の計算をしなさい。【知識・技能 2点×2問】

① $(15ab - 5b^2) \div 5b$ [84.7%] $= \frac{153k}{5k} - \frac{50k}{5k}$

 $(6x^{2}y - 3xy) \div \left(-\frac{3}{2}x\right) [62.8\%]$ $= -6x^{3} + 3x^{2} + 3x^{2}$

(x+a)(x+b)= $x^2 + (0+b)x+ab$ $(a-b)^2$

(2) 次の①から③の式を展開しなさい。【知識・技能 2点×3問】

① (2x+3)(x-4) [82.4%] ② $= 2x^2 - 8x + 3x - 12$

(3) 次の①から③の式を因数分解しなさい。【知識・技能 2点×3問】

共通囚数 ① *mab-mb* 【69.0%】

= ml(a-1)

② $x^2 - 14x + 49$ [83.1%] ③ = $\chi^2 - 2 \times \chi \times 7 + 7^2$ $(x^2 - 2x)^2 = (x^2 - 2x)^2 + (x^2 - 2x)^2$

(4) 120にできるだけ小さい自然数をかけて、ある自然数の2乗にするにはどのような数をかければよいか求めなさい。【思考・判断・表現 2点】【47.9%】 \bigcirc という子グにないは、よいかまりをできると $2^3 \times 3 \times 5$

$$-\frac{120}{160}$$
 = $2^2 \times 2 \times 3 \times 5$
 $-\frac{130}{115}$ = $2^3 \times 3^2 \times 5^2$ となれば よい $2 \times 3 \times 5 = 30$

3 次の(1²)から(9)の問いに答えなさい。

1 36 [74.7%]

② 0.09 [70.9%]

③ 5 [79.3%]

土台

生 0、3

土万

(2) 次の①,②の数を $\sqrt{}$ を使わないで表しなさい。【知識・技能 2点 \times 2問】

① $\sqrt{4}$ [78.9%]

(3) 次の数のうち,無理数を選びなさい。(完答)【知識・技能 2点】【64.8%】

有理数、分数の形で

$$\sqrt{8}$$
, $-\sqrt{0.81}$, $\sqrt{\frac{4}{9}}$, $-\sqrt{3}$, $\sqrt{16}$ + $\sqrt{4^2}$ = 4
 $-\sqrt{(0.9)^2}$ $\sqrt{(\frac{2}{3})^2} = \frac{2}{3}$ $\sqrt{8}$, $-\sqrt{3}$ = -0.9

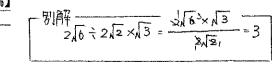
(4) 次のア〜エのうち、正しいものを一つ選び、そのかな符号を答えなさい。【知識・技能 2点】

🖟 81の平方根は、9である。

ය, 9. Cනවං _____ [55.2%]

 $\sqrt{400} = \sqrt{20^3} = 20$ $\sqrt{(-5)^2}$ は、5 である。

N(-5) = 125 = 15= 5


$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\hline
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}
\hline
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}
\hline
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}
\hline
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}
\hline
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}
\hline
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}
\hline
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}$$

(5) 次の数を、小さい方から順に並べなさい。(完答)【知識・技能 2点】【44.8%】

★ 有理化して、 分母をそろえて $\frac{3}{5}$ 、 $\frac{3}{\sqrt{5}}$ 、 $\frac{\sqrt{3}}{5}$ 、 $\sqrt{\frac{3}{5}}$ 。 $\sqrt{\frac{3}{5}}$ 。 $\sqrt{\frac{3}{5}}$ 。 $\sqrt{\frac{3}{5}}$ 。 $\sqrt{\frac{15}{5}}$ 。 \sqrt

(6) 次の①、②の計算をしなさい。【知識・技能 $2点\times2$ 問】 7ま $\sqrt{3}$ $\frac{3}{5}$ $\sqrt{3}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$

① $\sqrt{28} \div \sqrt{7}$ [69.7%] ② $\sqrt{24} \div \sqrt{8} \times \sqrt{3}$ [68.2%] = $\frac{128}{\sqrt{7}} = \frac{128}{\sqrt{7}}$ [7] $\frac{12}{\sqrt{7}} = \frac{12}{\sqrt{7}} = \frac{12}{\sqrt{7}} = \frac{12}{\sqrt{7}}$

★有理化 次の式を簡単にしなさい。【知識・技能 2点×2問】 ★しの中を関単にする $-\sqrt{2}$ [55.9%] ① $\sqrt{3} + \sqrt{12}$ [72.0%] $=\sqrt{3}+2\sqrt{3}$ = 3/3 次の①から③の式を展開しなさい【知識・技能 2点×3問】 [(A-A)= a-2al+l2 - (a-b)(a+b)=a-b- $(\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5})$ [76. 6%] $(2\sqrt{6}-1)^2$ [51.7%] $= (\sqrt{7})^2 - (\sqrt{5})^2$ $=(2\sqrt{6})^2-2\times2\sqrt{6}\times|+|^{\frac{1}{2}}$ $=2\sqrt{3}-3\sqrt{2}$ = 24- 4/6+ = 25 - 4,6 $3<\sqrt{a}<4$ をみたす自然数aの個数を求めなさい。【思考・判断・表現 2点】【66.3%】 9くなく16 をみたせば"いいので Q=(0,11,12,13,14,15 g 6/固 4 次の(1)から(3)の問いに答えなさい。 (1) 次の①から⑥の二次方程式を解きなさい。【知識・技能 2点×6問】 ① $\sqrt{3}x^2 = 192$ \ [65.5%] ② $(3x^2=24)$ [61.3%] $(x+3)^2=49$ [60, 5%] ÷3 | x2=64 / ÷3 73 V 72 = 8 V 73 $9+3=\pm7$ $\alpha + 3 = 7 \approx \alpha = 4$ x= ±2/2 £,7 x=4,-10 $4 - x^2 - x - 20 = 0$ [70.9%] $2x^2 - 3x - 1 = 0$ [67.0%] 医数分解≤ (x+4)(x-5)= 0 国齢解くχ(χ-8)=0 $-(-3)\pm\sqrt{(-3)^2-4\times2\times(-1)}$ 9.0 = P $\alpha = -4.5$ 解の公式 ax2+ Ax+1=0 x= -l+12-400 = 3± 117 (2) 連続した2つの正の整数があります。それぞれを2乗した数の和が61になるとき、これらの2つ の整数を求めなさい。【思考・判断・表現 2点】【61.7%】 χ² ε (X+1) 連続する2つの正の整数のうち、小さい方を欠とすると、 大きい方の整数1は、0+1となり、 のは正の整数だから、 グェー 6は 問題にあわない、 x²+(x+1)²= 61)展開 ダ=5のとき おめる2つの整数は 5.6 となり $x^2 + x^2 + 2x + 1 = 61$ % $\sqrt{9}$ % これは問題にあっている。 x2+x-30=01 +2 (x-5)(x+6)=01 因数分解 27の整数は、566 $\chi=5$, -6(3) 二次方程式 $x^2+ax-2a=0$ の解の1つが1であるとき、もう1つの解を求めなさい。【58.2%】 ① x=1を代入して のの値を求める ニョ x=1であるということ 【思考・判断・表現 2点】 1+0-20=0 - a = a = 1 ② の=しを代入して、二次方程式を解く $\chi^2 + \chi - 2 = 0$

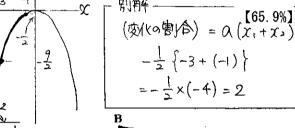
もう1つの解 -2

 $(\chi-1)(\chi+2)=0$

X=1,-2

5 次の(1)から(3)の問いに答えなさい。【知識・技能 2点×3問】

(1) yがxの2乗に比例し、x=-3のときy=72である。このとき、yをxの式で表しなさい。 ti例定数を aとすると [71.3%]

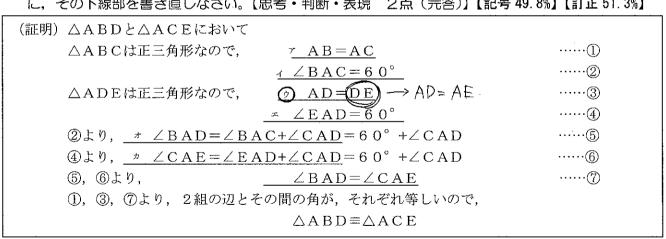

$$y=ax^{2}=x=-3$$
, $y=72 = 1$ $\sqrt{3} = 72 = 1$ $\sqrt{3} =$

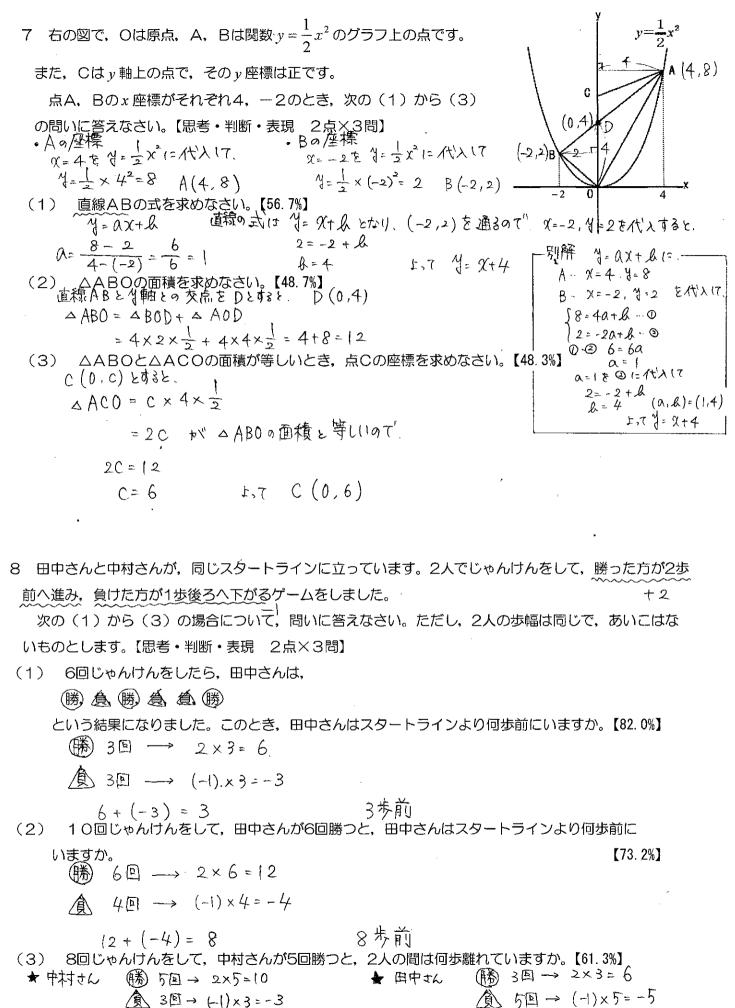
g=2のとき 4·4で 最大値

trat"

関数 $y = x^2$ について、x の変域が $-1 \le x \le 2$ のときの y の変域を求めなさい。【64.0%】 グラフょり 9年0日とき 4=0 で最小値

関数 $y = -\frac{1}{2}x^2$ について、x の値が-3から-1まで増加するときの変化の割合を求めなさい。


6 図で△ABCと△ADEは正三角形です。 4-


このとき、△ABD≡△ACEとなることを次のように証明しました。 しかし、書かれている証明は、このままでは正しくありません。

証明の下線部のうち、いずれか1つを書き直すことで、証明を正しく

することができます。この証明を正しくするために、下線部アからキまでのうち、どれを書き直せ ばよいか、書き直すものを1つ選んで、そのかな符号を書きなさい。また、証明が正しくなるよう

に、その下線部を書き直しなさい。【思考・判断・表現 2点(完答)】【記号 49.8%】【訂正 51.3%】

(0 + (-3) =

このとき,田中さんはスタートラインより何歩前にいますか。【82.0%】 3= 6 _.
x3=-3
3歩前 田中さんが6回勝つと,田中さんはスタートラインより何歩前に
[73. 2%]
6=12
$\times 4 = -4$
8 歩 前 P村さんが5回勝つと、2人の間は何歩離れていますか。【61.3%】 $\times 5 = 10$

問	題番号	正答	R5年度正答率	↑ ↓	R4年度正答率	R3年度正答率	誤答例	無答率
1	(1)	$-\frac{5}{12}$	75.1	1	91.6	91.7	11/12, 5/12	0.5
	(2)	x = 2	83.6		86.2	79.6	-2	2.6
	(3)	-x-3y	84.1		84.7	84.7	x-3y, x-9y	1.1
	(4)	$-72x^{2}$	78.8		80.1	77.0	$72x^2, -72xy$	0.5
	(5)	$x = \frac{5 + 3y}{2}$	73		75.1	70.9	5月2日	7.4
	(6)	(x, y) = (2, -1)	81.5		80.5	78.0	(-1,1)	6.3
	(7)	2 3	91	· <u>-</u>	84.3	84.7	1/6	2.6
		3a-b	87.3	- 1	84.7	84.7	15ab-b	1.1
	$(1)\frac{1}{2}$	-4xy+2y	64.6		62.8	64.2		4.2
		$\frac{-3xy + 2y}{2x^2 - 5x - 12}$					4xy+2y	
		$x^2 + 2x - 15$	74.6	↓	82.4	76.4	2x²-16x-12	3.7
	(2) ②	L	86.2		87.0	85.3	$-3x^2 - 8x + 15, -3x^2 - 10x + 25$	2.1
	3	$x^2 - 10x + 25$	87.8		85.1	86.6	x²-25	2.1
	1	mb(a-1)	71.4		69.0	67.7	m(ab-b)	10.1
	(3) ②	$(x-7)^2$	81.5		83.1	85.0	(x+7)(x-7)	6.9
	3	9(x+2)(x-2)	47.1	1	37.9	33.9	(3x+6)(3x-6)	6.9
Ш	(4)	30	51.3		47.9	48.2	6	25.9
	1	±6	74.1		74.7	77.3	6	8.5
	(1) ②	±0.3	73		70.9	68.7	±0.03	3.7
	3	$\pm\sqrt{5}$	81.5		79.3	79.6	√5	1.6
	(2)	2	84.7	1	78.9	76.4	±2	1.6
	(2) ①	$-\frac{3}{8}$	81	1	75.9	78.3	±2,16	6.9
	(3)	$\sqrt{8}, -\sqrt{3}$	63		64.8	61.7	$\sqrt{\frac{4}{9}},\sqrt{3}$	8.5
	(4)	ウ	53.4		55.2	46.3	ア,イ	3.7
	(5)	$\frac{\sqrt{3}}{5}, \frac{3}{5}, \sqrt{\frac{3}{5}}, \frac{3}{\sqrt{5}}$	42.9		44.8	37.7	有理化したものを書く	8.5
3	(1)	$\frac{3}{2}$	61.9	Ţ	69.7	64.5	±2	4.8
	(6) <u>1</u>	<u> </u>	65.6		68.2	68.7	±3	4.8
	(7) ①	3√3	72.5		72.0	75.7	$2\sqrt{3}, \sqrt{15}$	6.3
	$(7)\frac{\odot}{2}$	3√2	54		55.9	57.5	$\frac{2\sqrt{3},\sqrt{13}}{\sqrt{2},3\sqrt{2},\frac{\sqrt{2}}{4}}$	11.1
	1	$\frac{-2}{2\sqrt{3}-3\sqrt{2}}$	66.7	1	72.0	73.5	$2\sqrt{3}, -6\sqrt{20}, \sqrt{6} - 3$	14.3
	(8) ②	$25-4\sqrt{6}$	52.4	· *	51.7	56.2	25-2√6	17.5
	3	$\frac{23-4\sqrt{6}}{2}$	67.7	<u> </u>	76.6	77.0	5	13.2
	(9)	 6個	60.3	1	66.3	71.6		16.4
-		$x = \pm 8$		<u> </u>	65.5	68.1	3, 7, 14回 8	
	① ②	$x = \pm 2\sqrt{2}$	58.7					12.7 9
		$x = \pm 2\sqrt{2}$ x = 4, -10	57.7		61.3	63.9	±√2	
	(1) <u>(3)</u>	x = 4,-10 x = -4,5	53.4	,	60.5	62.3	±2√10, 10,-4	14.8
4	5		65.6	. <u>.</u>	70.9	71.6	-3±√75	15.3
		$x = 0.8$ $x = \frac{3 \pm \sqrt{17}}{4}$	56.1	<u> </u>	70.1	61.3	<u>8</u>	20.6
	6		57.1	<u> </u>	67.0	61.0	1	21.2
	(2)	5,6	57.7	<u> </u>	61.7	62.9	-6,5	26.5
	(3)	x = -2	54	<u> </u>	58.2	61.7	2	30.7
5	(1)	$y = 8x^2$	64.6	. <u> </u>	71.3	70.0	y=8x, 64	15.9
	(2)	0≦ <i>y</i> ≦4	62.4		64.0	66.5	1≦y≦4	16.4
	(3)	2	57.1	ļ	65.9	62.6	-2	18
6	記号	ウ	46		49.8	51.4	クク	32.3
	訂正	AD=AE	44.4	\downarrow	51.3	46.6	∠BAD=∠EAD	38.1
7	(1)	y = x + 4	47.6	↓	56.7	59.4	y=3/4x+5, y=1/2	31.7
	(2)	12	42.3	ļ	48.7	55.9	15, 10	36
	(3)	C(0,6)	41.3	\downarrow	48.3	55.9	(0,7), (5,0), (0,5)	36.5
8	(1)	3歩前	73	ļ	82.0	85.6	1,2	20.1
	(2)	8歩前	75.7		73.2	81.2	6, 4	16.9
	(3)	6歩	67.2	1	61.3	64.2	5	18
			<u> </u>	- 11. 4				

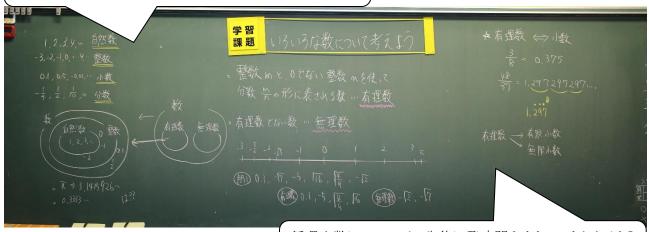
※矢印は、昨年度比4ポイント以上の増減に対して ↑ ↓ で表示

3年 考察と分析・授業提案

〇 考察と分析

問題内容は、「式の展開と因数分解」「平方根」「二次方程式」「関数」の分野である。昨年度と比べて、多くの問題で正答率が低下している。式の展開の間違いや、平方根、二次方程式の解の符号の間違いなど、基本問題での間違いも多くあった。数学科の学習では、既習の内容をもとに関連して考える場面が多くあるため、どの分野においても基礎基本の定着が重要である。基礎・基本の定着の不足が、正答率の低下に大きくかかわっていると考えられる。

3(3)次の数から無理数を選びなさい。


正答率 63.0%(昨年度 64.8%) 無答率 8.5%

$$\sqrt{8}$$
, $-\sqrt{0.81}$, $\sqrt{\frac{4}{9}}$, $-\sqrt{3}$, $\sqrt{16}$
 誤答例 $\sqrt{\frac{4}{9}}$, $\sqrt{3}$

設題 3 は、平方根に関する問題である。有理数であるのか無理数であるのかという単純な知識を問われる問題であるが、正答率は 63%と非常に低い。その原因としては、無理数という新しい数の概念形成ができていないことや、 $\sqrt{}$ の中の数を簡単にするという基本的な技能が備わっていないのではないかと考えられる。このことから、まずは数の概念の拡張をしっかりと行う必要がある。そして、既習している $\sqrt{}$ の中の数を簡単にし、その数が有理数なのか無理数なのかという判断をする。この身につけた技能と概念を結びつけられるように指導していく必要があると考える。

O 授業提案 平方根(教科書 P46~47)

数の概念の拡張をするためには、ベン図を利用することが効果的であると考え、本授業を提案する。はじめに、これまで学習してきた数について振り返る。「自然数」「整数」「小数」「分数」など、ベン図を使って考える。そして、これまで円の学習を中心に用いてきた「 π 」はどのような数なのか問いかける。「 π 」は循環しない無限小数になるので分数で表すことができないため、新しい数の概念が必要になってくることに気付かせる。そこで、「無理数」を教える。その上で $\sqrt{}$ の中の数を簡単にする問題に取り組み、簡単にした数がどのような数に分類されるのかを考える。技能の習得だけでなく数の概念にも着目できるようにする。

学習課題へのつながりを意識するために、授業の導入で、中学1年で学習した「数の世界のひろがり」を復習する。

循環小数については、生徒に興味関心をもってもらえるよう に、小数から分数に表す方法を紹介してもよい。